Stability Analysis of Systems with Periodic Coefficients: an Approximate Approach
نویسندگان
چکیده
The paper deals with an approximate method of stability analysis for second order linear systems with p<;riodiQcoefficients. The periodic functions are approximated during the first period of motion by a constant, a linear or a quadratic function of time such that the resulting approximate equations have known closed form solutions. The approximate equivalent equations are generated through an expansion of periodic coefficients into ultraspherical polynomials. The stability criteria is determined from the solution of approximate equivalent system and the generalized Floquet theory. The technique is quite general and does not require any restriction on the magnitudes of system parameters. In particular, the method has been applied to cOnstruct approximate stability chart for the Mathieu equation. A close agreement between the approximate and the exact result is found even for large values of system Parameters.
منابع مشابه
Analytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method
In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...
متن کاملDynamic and Stability Analysis of Flexible Cam-Follower Systems
In this paper, dynamic and stability analysis of a flexible cam-follower system is investigated. Equation of motion is derived considering flexibility of the follower and camshaft. Viscous and Coulomb frictions are considered in the rocker arm pivot. The normalized equation of motion of the system is a 2nd- order differential equation with periodic coefficients. Floquet theory is employed to s...
متن کاملDynamic and Stability Analysis of Flexible Cam-Follower Systems
In this paper, dynamic and stability analysis of a flexible cam-follower system is investigated. Equation of motion is derived considering flexibility of the follower and camshaft. Viscous and Coulomb frictions are considered in the rocker arm pivot. The normalized equation of motion of the system is a 2nd- order differential equation with periodic coefficients.
Floquet theory is employed to...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملSymplectic Matrices and Strong Stability of Hamiltonian Systems with Periodic Coefficients
A theory of the analysis of strong stability of Hamiltonian systems with periodic coefficients is presented. It is based on the strong stability of fundamental solution evaluated at its period. However, the matrix solution being symplectic, this analysis leads to the search of strong stability of a symplectic matrix. A method for the determination of the monodromy matrix is given and an applica...
متن کامل